RENESAS

M62364FP/GP

8-bit 8ch Multiplying D/A Converter with Buffer Amplifiers

REJ03D0875-0400 Rev.4.00 Oct 02, 2009

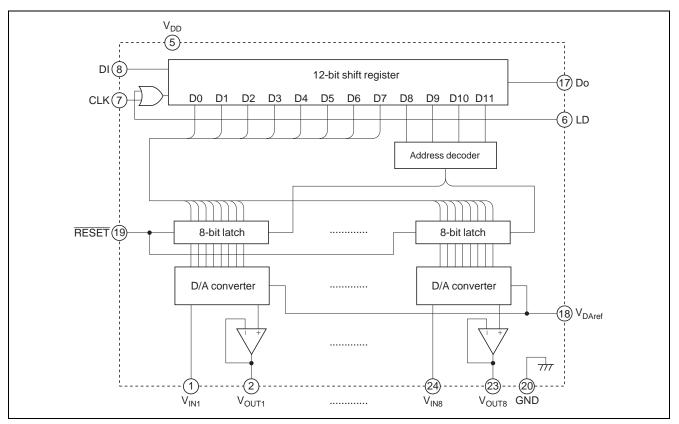
Description

The M62364 is a CMOS 8-bit 8ch D/A converter having a multiplying function and output buffer amplifiers. It has a serial data input and can easily communicate with a microcontroller by the simple three-wiring method (DI, CLK, LD).

The output buffer amplifiers operating in AB-class has both sinking and driving capabilities of 1.0 mA or more and can operate in a whole supply range from V_{DD} to GND.

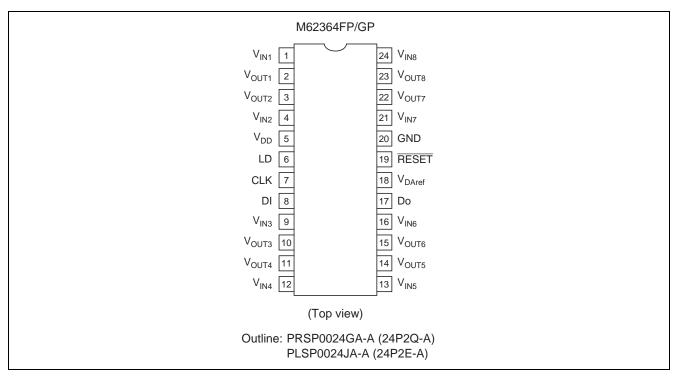
The IC is suitable for a use in automatic adjustment applications in conjunction with a MCU by utilizing the terminal D_0 for a cascading connection.

Features


- Three-wiring serial data transmission
- Doubled precision 8ch D/A converter employing an R-2R with higher-order segment method
- 8 buffer amplifiers operating in a whole supply voltage range from V_{DD} to GND
- 4 quadrant multiplication

Application

Digital to analog conversion for consumer and industrial equipment.


Gain setting and automatic adjustment of display-monitor and CTV.

Block Diagram

RENESAS

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
8	DI	Serial data input
17	Do	Serial data output
7	CLK	Shift clock input. Input data of DI are taken into the 12-bit shift register on a rising edge of the clock.
6	LD	A low state enables data loading to the 12-bit shift register.
		During a rising edge of LD, the data will be loaded to the output register.
19	RESET	Reset 8-bit latches
2	V _{OUT1}	D/A converter output with 8-bit resolution
3	V _{OUT2}	
10	V _{OUT3}	
11	V _{OUT4}	
14	V _{OUT5}	
15	V _{OUT6}	
22	V _{OUT7}	
23	V _{OUT8}	
5	V _{DD}	Power supply
20	GND	Ground
1	V _{IN1}	D/A converter input
4	V _{IN2}	
9	V _{IN3}	
12	V _{IN4}	
13	V _{IN5}	
16	V _{IN6}	
21	V _{IN7}	
24	V _{IN8}	
18	V _{DAref}	D/A converter reference voltage input

RENESAS

Absolute Maximum Ratings

ltem	Symbol	Ratings	Unit
Supply voltage	V _{DD}	–0.3 to +7.0	V
Digital input voltage	V _{IND}	–0.3 to +7.0	V
Analog input voltage	V _{IN}	–0.3 to V _{DD} + 0.3	V
Analog output voltage	V _{OUT}	–0.3 to V _{DD} + 0.3	V
D/A reference voltage	V _{DAref}	–0.3 to V _{DD} + 0.3	V
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

<Ana/Dig Common Part>

 $(V_{DD} = 5 \text{ V} \pm 10\%, V_{DD} \ge V_{IN}, \text{GND}, V_{DAref} = 0 \text{ V}, \text{ Ta} = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$

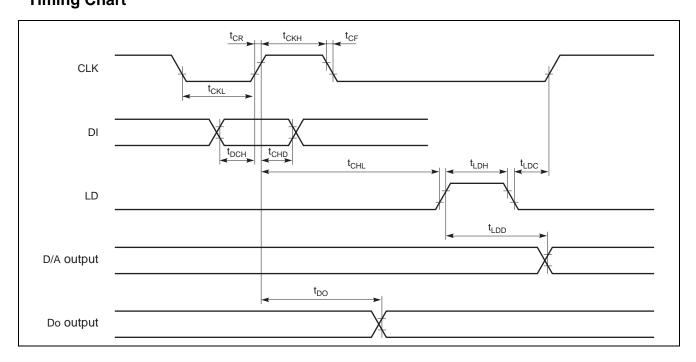
			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{DD}	2.7	5.0	5.5	V	
Supply current	I _{DD}			3.5	mA	CLK = 1 MHz, V_{CC} = 3 V, I_{AO} = 0 μA

<Digital Part>

 $(V_{DD} = 5 \text{ V} \pm 10\%, V_{DD} \ge V_{IN}, \text{GND}, V_{DAref} = 0 \text{ V}, \text{ Ta} = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$

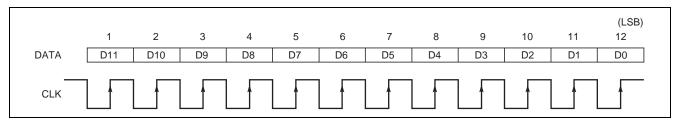
			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Input leak current	I _{ILK}	-10		10	μA	$V_{IN} = 0$ to V_{DD}
Digital input "Low" voltage	VIL	—	_	0.2 V _{DD}	V	
Digital input "High" voltage	VIH	0.8 V _{DD}	_	_	V	
D ₀ terminal output "Low" voltage	V _{OL}	—	_	0.4	V	$I_{OL} = 2.5 \text{ mA}$
D _O terminal output "High" voltage	V _{OH}	$V_{DD} - 0.4$			V	I _{OH} = -400 μA

<Analog Part>


$(V_{} - 5 V + 10\%)$	$V_{} > V_{}$ GND	$V_{-1} = -0 V T_{2}$	20 to $\pm 85^{\circ}C$ unly	acc otherwise noted)
$(v_{DD} - J v \pm 10/0)$	$v_{DD} \leq v_{IN}, OND$, $\mathbf{v}_{\text{DAref}} = 0 \mathbf{v}$, $1a = 1$	2010 ± 65 C, unit	ess otherwise noted.)

			Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions	
Input current	I _{IN}		—	0.30	mA	$V_{IN} = 5 V, V_{DAref} = 0 V$	
						Proportional to Max. input current condition $(V_{IN} - V_{DAref})$ and digital data of each channels	
D/A reference input	I _{DAref}	-2.40	—	—	mA	$V_{IN} = 5 V, V_{DAref} = 0 V$	
current						Proportional to Max. input	
						current condition $(V_{IN} - V_{DAref})$	
						and digital data of each channels	
Resolution	RES	_	8	—	bit		
Differential nonlinearity	DNL	-1	_	1	LSB	V _{DAref} = 0.050 V (10 mV/LSB)	
Nonlinearity	NL	-1	—	1	LSB	Without load ($I_{AO} = \pm 0$)	
Buffer amplifier output	V _{AO}	0.1	_	$V_{CC}-0.1$	V	$I_{AO} = \pm 100 \ \mu A$	
voltage range		0.2	—	$V_{CC} - 0.2$		$I_{AO} = \pm 500 \ \mu A$	
Buffer amplifier output	I _{AO}	-1	—	1	mA	Upper saturation voltage = 0.4 V	
current range						Lower saturation voltage = 0.4 V	
Output capacitive load	Co	_	_	0.1	μF		
Buffer amplifier output impedance	Ro		5		Ω		

AC Characteristics


$(V_{DD} = 5 \text{ V} \pm 10\%, V_{DD} \ge V_{IN}, \text{GND}, V_{DAref} = 0 \text{ V}, \text{ Ta} = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$										
			Limits							
Item	Symbol	Min	Тур	Max	Unit	Conditions				
Clock "L" pulse width	t _{CKL}	200	—	—	ns					
Clock "H" pulse width	t _{скн}	200	—	—	ns					
Clock rise time	t _{CR}	—	—	200	ns					
Clock fall time	t _{CF}	—	—	200	ns					
Data setup time	t _{DCH}	60	—	—	ns					
Data hold time	t _{CHD}	100	—	—	ns					
LD setup time	t _{CHL}	200	—	—	ns					
LD hold time	t _{LDC}	100	—	—	ns					
LD "H" pulse duration time	t _{LDH}	100	—	—	ns					
Data output delay time	t _{DO}	70	—	350	ns	C _L = 100 pF				
D/A output setting time	t _{LDD}	_	—	300	μs	$C_L \le 100 \text{ pF}, \text{ V}_{AO}: 0.1 \leftrightarrow 2.6 \text{ V}$				
						This time until the output becomes the final value of 1/2 LSB				

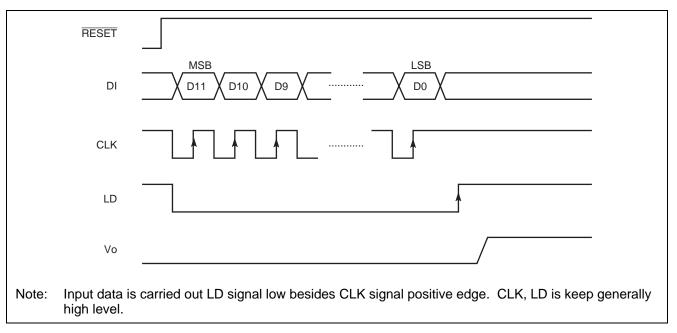
Timing Chart

Digital Data Format

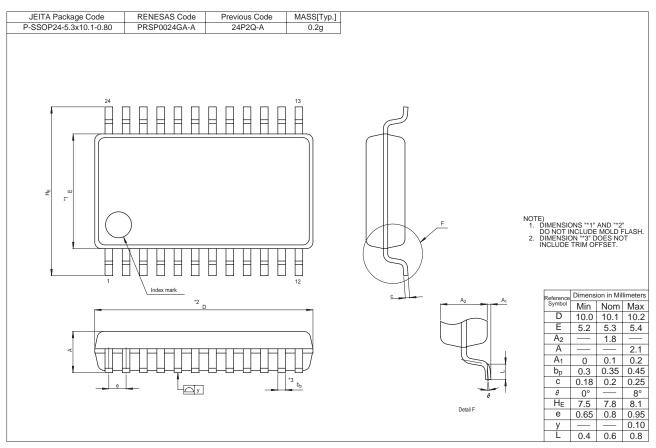
12-bit serial data

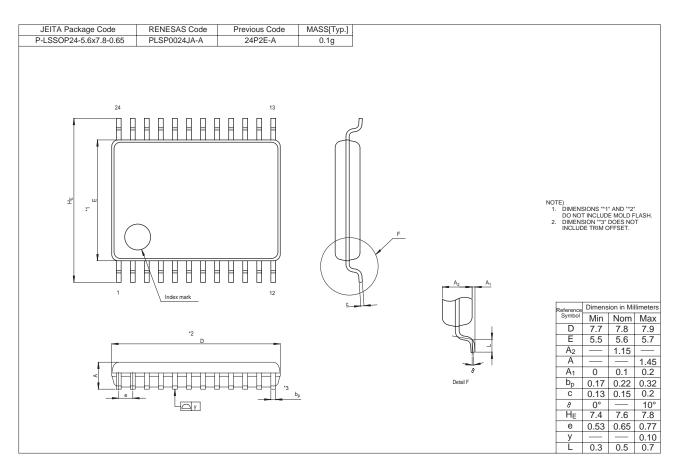
Data Assignment

D0	D1	D2	D3	D4	D5	D6	D7	: DAC data
(LSB)							(MSB)	
D8	D9	D10	D11	: DAC se	elect data			


DAC Data

D0	D1	D2	D3	D4	D5	D6	D7	D/A Output
0	0	0	0	0	0	0	0	V _{DAref}
1	0	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 256 \times 1 + V_{DAref}$
0	1	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 256 \times 2 + V_{DAref}$
1	1	0	0	0	0	0	0	$(V_{IN} - V_{DAref}) / 256 \times 3 + V_{DAref}$
:	1	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	$(V_{IN} - V_{DAref}) / 256 \times 255 + V_{DAref}$


DAC Select Data


D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	V _{OUT1} selection
0	0	1	0	V _{OUT2} selection
0	0	1	1	V _{OUT3} selection
0	1	0	0	V _{OUT4} selection
0	1	0	1	V _{OUT5} selection
0	1	1	0	V _{OUT6} selection
0	1	1	1	V _{OUT7} selection
1	0	0	0	V _{OUT8} selection
1	0	0	1	Don't care
1	0	1	0	Don't care
1	0	1	1	Don't care
1	1	0	0	Don't care
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care

Timing Chart (Model)

Package Dimensions

RENESAS

Ordering Information

Part No.	Package Name	Package Code	Taping Spec.
M62364FP#DF1J,DF1G,DF2G, TF1J,TF1G,TF2G	24P2Q-A	PRSP0024GA-A	2,000/Reel
M62364GP#DF, TF	24P2E-A	PLSP0024JA-A	2,500/Reel

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com